Role of group A streptococcal virulence factors in adherence to keratinocytes.
نویسندگان
چکیده
To evaluate the role of putative group A streptococcal virulence factors in the initiation of skin infections, we compared the adherence of a wild-type M49-protein skin-associated strain to that of a series of 16 isogenic mutants created by insertional inactivation of virulence genes. None of the mutants, including the M-protein-deficient (emm mutant) strain, displayed reduced adherence to early-passage cultured human keratinocytes, but adherence of the mutant lacking hyaluronic acid capsule expression (has mutant) was increased 13-fold. In contrast, elimination of capsule expression in M2-, M3-, and M18-protein has mutants increased adherence only slightly (1.3- to 2.3-fold) compared to their respective wild-type strains. A mutant with inactivation of both emm and has displayed high-level adherence (34.9 +/- 4.1%) equal to that of the has mutant strain (40.7 + 8.0%), confirming the lack of involvement of M49 protein in attachment. Moreover, adherence of the M49-protein-deficient (emm mutant) and wild-type strains was increased to the same level (57 and 55%, respectively) following enzymatic digestion of their hyaluronic acid capsule. Adherence of mutants lacking oligopeptide permease (Opp) expression was increased 3.8- to 5.5-fold, in association with decreased cell-associated hyaluronic acid capsule. Finally, soluble CD46 failed to inhibit adherence of M49- and M52-serotype skin strains. We conclude that (i) bacterial M protein and keratinocyte CD46 do not mediate adherence of M49 skin-associated Streptococcus pyogenes to epidermal keratinocytes, (ii) hyaluronic acid capsule impedes the interaction of bacterial adhesins with keratinocyte receptors, (iii) modulation of capsule expression may be important in the pathogenesis of skin infections, and (iv) the molecular interactions in attachment of skin strains of S. pyogenes to keratinocytes are unique and remain unidentified.
منابع مشابه
Study of streptococcal hemoprotein receptor (Shr) in iron acquisition and virulence of M1T1 group A streptococcus.
Streptococcus pyogenes (group A streptococcus, GAS) is a human bacterial pathogen of global significance, causing severe invasive diseases associated with serious morbidity and mortality. To survive within the host and establish an infection, GAS requires essential nutrients, including iron. The streptococcal hemoprotein receptor (Shr) is a surface-localized GAS protein that binds heme-containi...
متن کاملRole of keratinocyte injury in adherence of Streptococcus pyogenes.
Keratinocytes injured acutely by UVB light or lipopolysaccharide were used to test the hypothesis that keratinocyte injury promotes bacterial adherence and the development of group A streptococcal skin infections. Injury did not affect adherence to undifferentiated and differentiated keratinocytes, but keratinocyte differentiation promoted adherence four- to fivefold.
متن کاملThe fibrinogen-binding M1 protein reduces pharyngeal cell adherence and colonization phenotypes of M1T1 group A Streptococcus.
Group A Streptococcus (GAS) is a leading human pathogen producing a diverse array of infections from simple pharyngitis ("strep throat") to invasive conditions, including necrotizing fasciitis and toxic shock syndrome. The surface-anchored GAS M1 protein is a classical virulence factor that promotes phagocyte resistance and exaggerated inflammation by binding host fibrinogen (Fg) to form supram...
متن کاملRole for streptococcal collagen-like protein 1 in M1T1 group A Streptococcus resistance to neutrophil extracellular traps.
Streptococcal collagen-like protein 1 (Scl-1) is one of the most highly expressed proteins in the invasive M1T1 serotype group A Streptococcus (GAS), a globally disseminated clone associated with higher risk of severe invasive infections. Previous studies using recombinant Scl-1 protein suggested a role in cell attachment and binding and inhibition of serum proteins. Here, we studied the contri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Infection and immunity
دوره 68 3 شماره
صفحات -
تاریخ انتشار 2000